Exciting students for deep learning

Leon Liebenberg
Mechanical Science and Engineering
5 Nov. 2020
‘I did not realize that I took my routine and university day for granted until now.’
‘Difficult to work in the same environment all day.’
‘Online labs do not have the same impact as physical hands-on counterparts.’
‘Seeing friends was a key part of coming to class. I miss that.’
‘Sharing design ideas virtually is difficult.’
‘I am actually quite fond of it.’
To succeed in online classes, students must take more responsibility for their learning.

Self-direction!
What positive and negative teaching experiences have you had?

- Virtual poster collaborative forum excitement → talk office hours connecting

- Small groups Fun (Hats!) Engaged (people, material)

- "Policing" teamwork isolation "two audiences"
Core of success in teaching:
Creation of enthusiasm about knowledge and learning
To get students excited to learn
Reason does not get people to act. Emotion is what causes people to act!

It is neurobiologically impossible to build memories, engage complex thoughts, or make meaningful decisions without emotion. We only think deeply about things we care about.

- Antonio Damasio
I teach, by motivating

Students get motivated, and **excited**

They learn (by teaching themselves)
Learning awakens a variety of internal developmental processes that can operate only when the student is interacting with people in her environment and in cooperation with peers.

— Lev Vygotsky

Sharing knowledge and perspectives

Teaching and motivating each other

Social recognition

Relatedness
2. Mix them up

Diverse teams

Thinking preference questionnaire & answering an open-ended question

Team contract helps
3. Make it Performative

Get students to introduce themselves via a 1-minute video.

Let students document their work with ePortfolios (Wix, Digication ...)

✓ Communicate abstract concepts in simplified manner

✓ Brings students onto same page, organizes information, and presents it an efficient and accessible manner

https://psg203.wixsite.com/me270-petergutfeldt

Fabrizio Vega (freshman) introducing himself to his ME 400 teammates. (Image used with permission)
4. Break syllabus into bite-size chunks

Several mini assignments, “Mini-Projects”

Cumulative (formative) assessment

Self-directed and Scaffolded

Team-based assignments; last one is solo

Every mini-project:

✓ Covers a core aspect of syllabus
✓ Analysis + Synthesis
✓ What is? What if? What wows?
✓ Disassemble discarded products
✓ Honor Code statement

Extract from a team-based ePortfolio of a series of 10 “mini-projects” in ME 270. (John, Shanay, David, Matt, and Francesco)
5. It takes a lot of preparation

Typical sequence of mini-project activities
6. (Guided) Self-directed learning

Open-ended questions have tips

Required: Rigorous, independent research

Self-reflection on learning

‘How to?’ + “Why?” + “Value judgment”
7. Make it situated

Establish a **context** that gives **value** to the necessary skills.

Adoption of contexts helps students to appreciate the immediate situation and underlying content.

“Real-world” challenges!

Discover the larger, interrelated system.

Immersion!

Spring 2020 individual mini-projects. ME 270 Students challenged to repurpose existing non-medical products for application in Covid-19 emergency scenarios

https://maciekmbaran.wixsite.com/mbaran20/2-1-the-product
Learners not only need to learn but also need to know what they know.

Self-confidence

Motivation
8. Virtual ideation

GroupMe, WeChat, Discord

Miro idea boards

Active participatory learning

Synchronous interaction

Captures essential elements of a face-to-face ideation environment

https://miro.com/app/board/o9J_kncIk9M=/
9. Make it Tangible

Students like stuff they can see and touch.

Ask students to disassemble products.

And to make low-fidelity prototypes.

Play with ideas!

Big payoff is not the stuff they build, but insights gained.
10. Stay in touch

Talk to students in real time.

Empathize!

Adjust your expectations.

Our classroom “personality” affects the learning environment.

From: Liebenberg, Leon <leonl@illinois.edu>
Sent: Sunday, September 13, 2020 3:51 PM
To: Liebenberg, Leon <leonl@illinois.edu>
Subject: How are you doing?

Dear

Thank you for your quiz. And for your superb work!
No problems regarding the lateness, and no apologies necessary.
Your problem-solving methodology is absolutely stunning, beyond being exemplary.

I am however concerned about the snow-ball effect due to your assignments being constantly late.
11. Activate peer learning

- Get students to peer-grade each other’s assignments *(Google Forms)*
- Detailed grading rubric and grading key

Peer review promotes curiosity and critical evaluation of other approaches

Prompt response

<table>
<thead>
<tr>
<th>ABG_2</th>
<th>AB1_1</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>The picture is not really clear because of the rack that is on top so it is hard to tell what the tray exactly looks like. Also there are more pictures</td>
<td>The descriptions are clear and covers all the criteria.</td>
<td>The worst and best material was switched around and the discussion of strain to failure percent difference was missing.</td>
<td>The graph was correct as well as the discussion was detailed.</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Everything was answered correctly.
Everything was answered and detailed.
The process and answer was correct.
The answer was wrong and there were missing and wrong variables that were inputted.
The steps that were taken along with the answer is correct.
Dashed lines were not used to notate bend lines and there were no slots for the sides to insert into.
Clear pictures along with clear notation met the criteria.
Some components were missing and the formatting was not compact however, it was a good project overall.
Everything was answered and detailed.
The worst and best material was switched around and the discussion of strain to failure percent difference was missing.
The graph was correct as well as the discussion was detailed.
Dashed lines were not used to notate bend lines and there were no slots for the sides to insert into.
Clear pictures along with clear notation met the criteria.
Some components were missing and the formatting was not compact however, it was a good project overall.
Everything was answered and detailed.
The worst and best material was switched around and the discussion of strain to failure percent difference was missing.
The graph was correct as well as the discussion was detailed.
Dashed lines were not used to notate bend lines and there were no slots for the sides to insert into.
Clear pictures along with clear notation met the criteria.
Some components were missing and the formatting was not compact however, it was a good project overall.
Everything was answered and detailed.
The worst and best material was switched around and the discussion of strain to failure percent difference was missing.
The graph was correct as well as the discussion was detailed.
Dashed lines were not used to notate bend lines and there were no slots for the sides to insert into.
Clear pictures along with clear notation met the criteria.
Some components were missing and the formatting was not compact however, it was a good project overall.
Everything was answered and detailed.
12. Make it Fun

Discovery, re-inventing new perspectives, new solutions

Excite students with projects of their choice.

Use “playful” tools.

Stage a virtual class competition.

Student presentations (celebrations)

GOLD AWARDS
Mini Project 3

Team AB9_1: Alexis Larson, Madison Yang, Maritza Renteria, Alex Stevens
Team AB8_4: Adithya Ramakrishnan, Dean Wiersum, Frank Baez, Matthew Lotarski
Team ABG_2: Kang Yoon Lee, Yantong Lin, Yun Hui Phoon

https://kierann2.wixsite.com/website
https://averyrh2.wixsite.com/website
https://roundme.com/tour/373767/view/1278498/
https://me200group11.wixsite.com/website
Connections between the course material and students’ lives outside of the course are one of the best available learning tools.
Hailing the “whole”-student

COGNITION + EMOTION + ACTION (+ SPIRIT):

(Guided) Self-direction
Logic + Intuition / Imagination
Sense of control
Intrinsic motivation
Divergent (+ Convergent) thinking
Synthesis (+ Analysis)
Experiential (+ Abstract) learning
Immersion
Constant challenges
Reframe questions
New experiences from old circumstances
Clear + prompt feedback
Enjoyment
Excitement
Does this integrative pedagogy work?
“Flow experience”

“Flow”: Total involvement, focus
Challenge vs. Skill
A state of “flow” leads to greater interest and motivation to learn.

Does greater engagement due to “flow” (via mini-projects) lead to a more holistic learning experience? (ME 200, Thermodynamics, Fall 2019)
Cognitive and Emotional engagement

Measured students’ **cognitive** and **emotional engagement** when subjected to mini-project & ePortfolio pedagogy (in ME 270)

Continued Learning

Independent study after completion of course
Re-imagining the future

Creative, committed online teaching can create deeper and richer learning experiences.

We should rethink and remake our educational practices.

Consider not only WHAT we have previously done but WHY we have done it and HOW it can be done better (for face-to-face or online learning)